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ABSTRACT RESULTS AND DISCUSSION MATERIALS AND METHODS
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INTRODUCTION (162 data) and verification (66 data) subsets for the purposes of
. . . . C Learning Rate transfer learning and confirmation of the training outcomes
Cannabis sativa L. (cannabis) has been known to  Figure 1: Examples of pseudo-color heat maps of a (a) hemp, THC 2 ogm _ 0.9968 027 consecutively.
oroduce cannabinoids that may have diverse Exm féof(yf”C%%D(v(v‘;"vc;‘% oy and (b) marijuana samples, THE o » GCIMS Data Processing The GC/MS data were first converted
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orovided a new statutory definition of hemp, which ® Fina Sensitivity oo, o Technologies, Inc., California, USA) for the subsequent data
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delta-9-tetrahydrocannabinol (THC) concentration of not Eo i ™ G S T A | o 091 To resample raw GC/MS data into equally spaced signals, data
more than 0.3% on a dry weight basis [1]. The new law  : 7| R vl Wi ; matrixes involving retention times (denoted as vector “Time”;
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cannabis containing more than 0.3% THC. To q Moo 101 MBS1S  Figure 2 (Upper) : Accuracy and average predicton ~ V&lUes (denoted as matrix "Mz scanned from 40 to 450 m/z) were
discrimi . . g . fo 20 S probabilities of the verification data in the hyper-parameter constructed. To facilitate feature recognition and discrimination
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analytical workflows for cannabis samples are essential : MBS10  bateh aize (with MaxEpo 20 and LR 16-3). In order to compare  MAfJUANA in the transfer learning process, a range of data

the variation of the average prediction probabilities, the values characteristic to the cannabinoids including THC, CBD, and
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In forensic laboratories.
GC/MS Is a commonly accepted analytical were rounded to 4 decimal places. - cannabinol (CBN) in vector Time and matrix MZ were extracted
Figure 3 (Left) : Training progress of the proposed classifier — (Taple 1). The 2D visualization of GC/MS data was the use of
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, measures of the verification data in the hyper-parameter values at the chosen range of retention times (Figure 1).
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Table 1: Data extraction of retention time (TIC) and major ion fragments
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